

An Introduction to Python

Presented to OCPython, 2014-04

Why Learn Python: Part 1 of 3

•Easy to learn yet powerful
•Concise syntax: few words per idea

expressed
•Usable for web, scripts, full blown standalone

applications
•Runs on all major operating systems

Why Learn Python: Part 2 of 3

•No type declarations to speak of
•Friendly, helpful community

•The language is very "googleable"

Why Learn Python: Part 3 of 3

•Small core language
•One needn't learn a lot to become productive

•Large set of reusable modules available
•Doing well in the PYPL index

Paradigms

●Procedural
●Object Oriented

●Functional (to an extent)

Major Implementations

CPython
Pypy

Jython
IronPython

CPython

●Latest versions 2.7 and 3.4
●Written in C

●Has its own byte code
●Can sort of JIT with Psyco on x86

●The Reference Implementation

Pypy

●Version 2.2 implements Python 2.7.3
●Written in Python

●JIT available
●Can use C or .Net as backends

●A 3.x beta is available

Jython

●Written in Java
●Version 2.5 is Python 2.5

●JIT's
●Runs on the JVM

●A 2.7 beta is available

IronPython

●Written in C#
●Version 2.7 is Python 2.7

●JIT's
●Runs on .Net

●Doesn't have much of a python standard library

Nouns and verbs

●Nouns: “data”
●Verbs: “operators”, “control flow”, “functions”,

“methods”

The simplest control flow:
sequential execution

print 'hello world'
print 'how are you?'

print 'goodbye'
Like a recipe or chemistry experiment

(Scalar) types: Part 1 of 2

●int: whole number
●long: potentially large whole number (2.x only)

●float: whole number or fraction
●bool: logic 101 truth values

●None: special value representing “nothing”
●str: a sequence of characters

(Collection) types: Part 2 of 2

●list: a read/write sequence
●tuple: a readonly sequence

●dict: like a dictionary or “hash”
●set: from set theory

●file: a sequence of bytes or characters, usually
on disk

Example Python 2.x int literals

0
1

999999

Example int, long and float
operators

Addition: +
Subtraction: -

Multiplication: *
Integer (2.x) or float (3.x) division: /
Integer division (both 2.x and 3.x): //

Modulus: %
Exponentiation: **

Example use of int

print(1+2)
prints 3

print(5**2)
prints 25

Example long literals in Python 2.x

1L
65535L

68056473384187692692674921486353642L

Int vs. long in Python 2.x vs 3.x

●In Python 2.x, small integers are int's, and big
integers are long's

●In Python 3.x, all integers are called int's, but
actually look like 2.x's long's behind the scenes

●In 3.x, the “L” suffix is never used

Example float literals

1.0
3.14159
1.5e20

Example use of float

Print(3.14159)
prints 3.14159

Print(2/9)
prints 0.222222222222

Print(1.5e20)
prints 1.5e+20

bool literals

True
False

Example bool operators

and
or
not

Common operators returning bool

 Less than: <
 Less than or equal to: <=
 Greater than: >
 Greater than or equal to: >=
 Equal to: ==
 Not equal to: !=

Example use of bool

print(not True)
prints False

Print(1 < 3)
prints True

print(True and False)
prints False

Print(True or False)
prints True

None literal

None

Quick aside: variables

When you want a variable to have a value, you
just assign it with =

x = 5
y = True

z = 2.71828

An analogy for understanding
variables

●Could be thought of as a sticky label you can
place on a value

●They just assign a name to a value

Variables' degree of permanence

●Unlike in mathematics a variable, once
assigned, does not necessarily retain that value

forever.
●A subsequent assignment to the same variable
changes its value, and possibly its type as well.

Example of changing a variable

x = 5
print(x)

prints 5

x = 10
print(x)

prints 10; the previous 5 is lost

Example None operators

x == None

y is None

Example Python 2.x str literals

'abc'
“def”

'ghi”jkl'
“mno'pqr”

u'αβγ'

Python 3.x str literals

'abc'
“def”

'ghi”jkl'
“mno'pqr”

'αβγ'

...all str's are unicode in 3.x.

Example str operators

Catenation: +
Repetition: *

Slicing

Example use of str's

print 'abc' + “def”
prints abcdef

print 'ghi' * 3
prints ghighighi

print 'abcdefghi'[3:6]
prints def

More on str slicing

print string[x,y] says:
print characters x through y-1

The leftmost character is character number zero

print '0123456789'[2:5]
prints 234

Slicing with negative values

A negative number in a slice says “from the end”

string='abcdefghi'
print string[3:-2]

prints defg

Example list literals

[]
[1]

[1, 2, 3, 4]
[20, 15, 5, 0]

Some other ways of getting a list:
Python 2.x

 print(range(3))
 # prints [0, 1, 2]

 print(range(5, 10))
 # prints [5, 6, 7, 8, 9]

Example list operators

Slicing
list_.sort()

Catenation: +
list_.append
list_.extend

Lists defined

●A list is a collection of (potentially) many values,
kept in order, indexed by whole numbers from 0
to num_values-1
●They are similar to arrays in many other
languages, but are very flexible compared to
arrays in C (another programming language)
●Modifying the end of a list is fast; modifying the
beginning of a list can be slow

(More) example list operators

Indexing: list_[5]
Slicing: list_[5, 10]

list_.append(5)
del list_[5]
list_.pop()

Comparison operators: <, ==, >=, etc.
len(list_)

A note on strings

 # This is sometimes quadratic (slow):
 string = ''
 for i in range(10000):
 string += str(i)

 # This is linear (fast):
 list_ = []
 for i in range(10000):
 list_.append(i)
 string = ''.join(list_)

Some brief notes about tuples

●Tuples are like lists, except they're readonly,
and their literals use (), not []

●The main exception is that a tuple with a single
element is written (1,) - for example

●It's unfortunately easy to end up with a tuple by
writing x = 1,

Dictionaries Defined

●Are similar to a real-world dictionary on one's
bookshelf

●Are like a “hash” or “map” or “associative array”
in some other languages

●Are a collection of (potentially) many variables,
that facilitate easily finding where you put

something previously
●Are indexed by immutable values and can store

mutable or immutable values

Examples of dictionary literals

{}
{ 'a': 'abc', 'b': 'bcd' }

{ 1: 'xyz', 2112: 'pdq', 'string': 5.0 }

Example use of a dictionary

 d = {}
 d[0] = 1
 d[1] = 2
 d[2] = 4
 d[3] = 8
 d[4] = 16
 d[5] = 32
 print(d[0])
 # prints 1
 print(d[4])
 # prints 16

(Further) example operations on
dictionaries

len(dict_)
d1.update(d2)

2.x: dict_.keys()
3.x: dict_

dict_.values()
dict_.items()

==
!=

Operations on dictionaries: Python
2.x vs 3.x

●In 2.x, .keys(), .values(), and .items() return lists
●In 3.x, they return iterators, achieving lazy

evaluation
●In 2.x, for an iterator, you must use .iterkeys(),

.itervalues() and .iteritems()
●If you don't know the difference, you're probably

better off with an iterator than a list; they're
mostly interchangeable

●To change an iterator to a list, just use
list(iterator)

Suitability of Dictionary Keys

●Dictionary keys must be immutable (readonly)
values

●So you cannot index a dictionary by a list, but
you can index a dictionary by a tuple

●You can still put pretty much anything you want
into a dictionary as a value; it's keys that are

restricted

Sets defined

(From wikipedia): A set is a collection of distinct
objects, considered as an object in its own right.
Sets are one of the most fundamental concepts

in mathematics.

Sets compared to dictionaries

●Sets are a lot like dictionaries minus the values
– all they have are the keys

●No key-value pairs

Creating sets

2.7 and up: { 'a', 'b', 'c' }
2.4, 2.5, 2.6, perhaps earlier: set(['a', 'b', 'c'])

Example set operations

Cardinality (number of members): len(s1)
Intersection: s3 = s1 & s2

Union: s4 = s1 | s2
Difference: s5 = s1 – s2

Comparing sets

Equality: s1 == s2
Inequality: s1 != s2
Subset: s1 <= s2

Proper subset: s1 < s2
Superset: s1 >= s2

Proper superset: s1 > s2

Definition of files

A sequence of characters or bytes, typically in a
filesystem on disk

Examples of files

A spreadsheet .ods or .xls
A text file .txt

A python file .py
sys.stdout
sys.stderr
sys.stdin

Common file operations: reading

file_ = open('file.txt', 'r')
file_.read(10)
file_.readline()

file_.close()

Common File Operations: Writing

file_ = open('file2.txt', 'w')
file_.write('line of text\n')

file_.close()

Python's type system

●pretty strong typing: few implicit conversions
●bool might be implicitly promoted to int

●int (or long) might be implicitly promoted to float
●Almost anything is usable in a boolean context

Explicit type conversions

Usually if you want to convert a variable x to
type t and save it in variable y: y = t(x)

Examples:
●y = int('1')

●y = float(5)
●y = str(1/9.0)

Modules

●Modules are the main way Python encourages
code reuse

●Modules are also an important way of keeping
the core language small

Example of reusing a module

 import decimal
 variable1 = decimal.Decimal(6)
 variable2 = decimal.Decimal('0.33')
 variable3 = variable1 * variable2
 print(variable3)
 # prints 1.98

What are decimals?

●An arithmetic type similar to float's
●Stored base 10 rather than float's base 2

●Slower than float
●More precise than float if used with

human-readable, base 10 inputs
●Nice for accounting applications

More modules in the standard
library

sys, os, os.path, collections, re, struct, StringIO,
time, heapq, bisect, array, copy, pprint, math,
itertools, functools, operator, anydbm, gdbm,

dbhash, bsddb, gzip, bz2, zlib, zipfile, tarfile, csv,
hashlib, ctypes, select, multiprocessing, mmap,

subprocess, socket, ssl, xml: sax, dom,
elementtree, signal, email, json, cgi, urllib,

httplib, profile, parser...

Discoverability

● python
● import decimal
● help(decimal)
● dir(decimal)

Creating your own modules
●Place the following in a file named foo.py and

put it somewhere on your Python path
(described by sys.path) or in “.”:

 #!/usr/bin/python
 print 'hello'

●And then in some other python file, you print the
word “hello” with:

 import foo

Getting an intuition for control flow

Winpdb! (or something like it)
Pudb! (or something like it)

http://winpdb.org/

Using winpdb

● Install winpdb
– Ubuntu/Debian: Synaptic

– Windows: wxWindows .exe + winpdb .zip +
setup.py

● Create your script as (EG) foo.py
● At a shell prompt type: winpdb foo.py

Example if statement

If 1 == 1:

 # http://en.wikipedia.org/wiki/Off-side_rule

 print('expression')

 print('was')

 print('True')

print('done with if')

if statement described

A way of doing something 0 or 1 times

If using an oven, preheat.
If using a toaster oven, don't worry about it.

if/else

if canned_beans:

 print('open can')

else:

 print('soak beans overnight')

If/elif/else

if x < 10:

 print('less than 10')

elif 10 <= x < 20:

 print('between 10 and 20')

elif 20 <= x < 30:

 print('between 20 and 30')

else:

 print('something else')

Case/switch

● Python has no case statement or switch
statement

● Instead use if/elif/else

Example while statement

x = 5

while x < 10:

 print(x)

 x += 1

prints the values 5, 6, 7, 8 and 9, each on

a separate line

while statement described

● Execute something 0 or more times
● Maybe 100 times
● Maybe forever

while analogy

put_food_in_oven()

while not is_cooked_clear_through():

 time.sleep(5*60)

remove_from_oven()

Example for statement

for i in range(5):

 print i

prints 0, 1, 2, 3, 4 – each on a different line

for statement described

Do something once for each thing in a specific
sequence

EG, if you were making apple pie, you might
core an apple once for each apple

Exceptions

import sys

n = int(sys.argv[1])

try:

 print(1.0 / n)

except ZeroDivisionError:

 print('no reciprocal')

Example of a user-defined function

def square(x):

 result = x * x

 return result

print(square(1))

prints 1

print(square(5))

prints 25

User-defined functions described

● A way of doing something from more than
one place in a program

● A way of introducing a “scope” to avoid
variable name collisions

● A way of hiding detail

Generator example

def my_range(n):

 i = 0

 while i < n:

 yield i

for j in my_range(3):

 print(j)

prints 0, 1, 2 each on a separate line

Parallelism

● CPython's threading is poor for CPU-bound
processes, decent for I/O-bound processes

● CPython is good at “multiprocessing”:
multiple processes and shared memory

● Jython and IronPython can thread well
● Stackless
● Pypy (Stackless)
● CPython: greenlets

Another way of getting a sequence
in Python 2.x

 for i in xrange(3):
 print(i)
 # prints:
 # 0
 # 1
 # 2

 ...and it's evaluated lazily

On range and xrange in Python 3.x

●xrange is gone in 3.x
●range in 3.x is like xrange in 2.x

●If you really do need an eagerly expanded list in
3.x, use list(range(x))

Example of reading a file line by
line

 file_ = open('foo.txt', 'r')
 for line in file_:
 print(line)
 file_.close()

Object Orientation

● Big topic
● class statement
● Like a “jack in the box”

Quick class Example
class Point:

 def __init__(self, x, y):

 self.x = x

 self.y = y

 def __add__(self, other):

 result = Point(0, 0)

 result.x = self.x + other.x

 result.y = self.y + other.y

 return result

 def magnitude(self):

 return (self.x ** 2 + self.y ** 2) ** 0.5

 def __str__(self):

 return 'Point(%f, %f)' % (self.x, self.y)

Using the example class
point1 = Point(5, 10)

point2 = Point(6, 15)

print(point1)

print(point2)

print(point1 + point2)

print(point1.magnitude())

Outputs:

Point(5.000000, 10.000000)

Point(6.000000, 15.000000)

Point(11.000000, 25.000000)

11.1803398875

Static Analyzers

● Pylint
● PyChecker
● Pyflakes

● pep8

Further Resources – Part 1 of 3

● The Python Tutorial:
http://docs.python.org/tutorial/

● Dive into Python: http://diveintopython.org/
● Python koans:

http://bitbucket.org/mcrute/python_koans/downloads

● Cheat sheets: http://rgruet.free.fr/#QuickRef
● Google http://www.google.com/

Further Resources – Part 2 of 3

● Choice of 2.x vs 3.x:
http://wiki.python.org/moin/Python2orPython3

● python-list (comp.lang.python):
http://mail.python.org/mailman/listinfo/python-list

● Your local Python User Group

Further Resources – Part 3 of 3

● Python on Windows FAQ
https://docs.python.org/2/faq/windows.html

● Why Python?
http://www.linuxjournal.com/article/3882

● Why learn Python?
http://www.keithbraithwaite.demon.co.uk/professional/presentations/2003/ot/why_learn_python.pdf

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95

